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Abstract. Information purchasing is a crucial issue that auctioneers
have to consider when running auctions, in particular in auction set-
tings where the auctioned item’s value is affected by a common value
element. In such settings it is reasonable to assume the existence of a
self-interested information provider. The main contribution of the infor-
mation provider may be the elimination of some uncertainty associated
with the common value of the auctioned item. The existence of an in-
formation provider does not necessarily impose the use of its services.
Moreover, in cases in which the auctioneer decides to purchase informa-
tion, it is not always beneficial for him to disclose it. In this work, we
focus on environment settings where the information that may purchased
still involves some uncertainty. The equilibrium analysis is provided with
illustrations that highlight some non-intuitive behaviors. In particular,
we show that in some cases it is beneficial for the auctioneer to ini-
tially limit the level of detail and precision of the information he may
purchase. This can be achieved, for example, by limiting the information
provider’s access to some of the data required to determine the exact com-
mon value. This result is non-intuitive especially in light of the fact that
the auctioneer is the one who decides whether or not to use the services
of the information provider; hence having the option to purchase better
information may seem advantageous.

Keywords: auction, common value, self interested auctioneer, informa-
tion provider

1 Introduction

One of the main crucial issues that an auction mechanism designer should take
into account is information disclosure. Namely, what part of the information
should be revealed in order to maximize the auctioneer’s target utility which
can either be related to the auctioned good’s expected revenue in case of a self-
interested designer or social welfare in cases in which the auction designer acts as



the social planner. Many researchers have explored this issue in both theoretical
and empirical manners [9, 12]. In particular, this issue becomes more relevant in
auction settings where the auctioned item involves an uncertain common value
element [11, 29, 14, 13, 20, 21, 4]. For example, the board of a firm for sale can
choose which part of the firm’s client list or its sales forecast will be disclosed
to the potential buyers. The decision regarding the information disclosure di-
rectly affects bidders’ valuation of the auctioned item and consequently also the
winner’s determination and the auctioneer’s expected revenue.

More often, information regarding the common value element is not avail-
able to the auctioneer before the auction. However, the auctioneer may use some
relevant expert services termed external information provider. This situation is
common in scenarios where information discovery involves special expertise or
equipment the auctioneer does not own. Specifically, in the scenario of a firm for
sale, the information may pertain to the financial stability of key clients of the
firm, hence typically offered for sale in the form of business analysts’ reports.
In such situations the auctioneer’s responsibility is to decide both whether to
purchase the information and whether to disclose it fully or partially to bidders
when purchased. Such scenarios become much more complex when the infor-
mation provider acts strategically, controlling the accuracy of the information
provided and its price.

Prior work in such settings assumed strategic behavior on the auctioneer and
the information provider sides. However, the auctioneer’s strategy was limited
to the choice of the information to be disclosed to the buyers [4, 11] while the
information provider’s strategy was limited to setting the price of the information
provided (i.e., assume the information provided is fully certain and captures the
exact common value [34]).

In this paper we extend the model to the more realistic case, where the
information provider cannot guarantee the identification of the true common
value, but rather can offer a more precise estimate of this variable. In particular
we focus on the case in which the information provider can only eliminate some
of the possible values and cannot fully distinguish between others. For example
in the example of the firm, it is possible that the information provider will be
able to classify customers as ”good” and ”bad” where each category spans a wide
range of possible values. Similarly, it is possible that the information provider
will be able to distinguish between strong and weak sales forecasts, but will not
be able to differentiate between a wide range slightly above or below the average
sales figures.

To this end, the paper’s contribution is twofold:

– We augment the three-ply equilibrium analysis (considering the strategic
behavior of the information provider, the auctioneer and the bidders) to
cases where the information provider can reduce the uncertainty associated
with the common value rather than provide its true value.

– We illustrate a beneficial, yet somewhat non-intuitive, strategic behavior of
the auctioneer. In particular, this behavior is the auctioneer’s choice to inten-
tionally limit the information provider’s (e.g., the analyst) ability to distin-



guish between values. This becomes possible when the information provider’s
ability to provide accurate information depends on inputs received from the
auctioneer. For example, in the sale of the firm example, the board can decide
to provide the analyst with accurate, yet aggregative, information, such that
the information provider can estimate future sales as weak or strong rather
than a certain figure from a wider range of values. The non-intuitiveness of
doing this is attributed to the fact that at the end of the day the information
provider’s information is offered for sale to the auctioneer herself, thus by
restricting the information provider’s ability to distinguish between values
the auctioneer restricts himself by not having the choice of purchasing more
accurate information.

The paper is structured as follows. In the following section we provide a
formal presentation of the model. Then, we present an equilibrium analysis and
illustrate the potential profit for the auctioneer from influencing the accuracy of
the information that can be provided by the information provider. Finally we
conclude with a review of related work and a discussion on the main findings.

2 The Model

Our model considers an auctioneer offering a single item for sale to n bidders
using a second-price sealed-bid auction (with random winner selection in case
of a tie). The auctioned item is assumed to be characterized by some value X
(the “common value”), which is a priori unknown to both the auctioneer and
the bidders [16, 17]. The only information publicly available with regard to X
is the set of possible values it can obtain, denoted X∗ = {x1, ..., xk}, and the
probability associated with each value, Pr(X = x) (

∑
x∈X∗ Pr(X = x) = 1).

Bidders are assumed to be heterogeneous in the sense that each is associated
with a type T that defines her valuation of the auctioned item (i.e., her “private
value”) for any possible value that X may obtain. We use the function Vt(x)
to denote the private value of a bidder of type T = t if the true value of the
item is X = x. It is assumed that the probability distribution of types, denoted
Pr(T = t), is publicly known, however a bidder’s specific type is known only to
herself.

The model assumes the auctioneer can obtain information related to the
value of X from an outside source, denoted “information provider”, by paying
a fee C that is set by the information provider. Similar to prior models (e.g.,
[34]), and for the same justifications given there, it is assumed that the option
of purchasing the information is available only to the auctioneer, though the
bidders are aware of the auctioneer’s option to purchase such information. In
its most general form, the information provided by the information provider is
a subset X ′ ⊂ X∗, ensuring that one of the values in X ′ is the true common
value. This is usually the case when the information provider cannot distinguish
between some of the possible outcomes however can eliminate others. Therefore,
the information provider will provide a subset X ′ ∈ D = {X1, ..., Xl} where
D is the set of possible subsets of X∗, each containing values between which



the information provider cannot distinguish, such that ∪Xi∈DXi = X∗ and
Xi ∩Xj = ∅, ∀i, j.

If the information is purchased, the auctioneer, based on the subset obtained,
can decide either to disclose the information to the bidders or keep it to her-
self (hence disclosing ∅). If she discloses the information, then presumably the
information received from the information provider is disclosed as is (i.e., truth-
fully and symmetrically to all bidders), e.g., if the auctioneer is regulated or
has to consider her reputation. Finally, it is assumed that all players (auction-
eer, bidders and the information provider) are self-interested, risk-neutral and
fully rational agents, and are acquainted with the general setting parameters:
the number of bidders in the auction, n, the cost of purchasing the information,
C, the possible subsets that may be obtained by the information provider, D,
the discrete random variables X and T , their possible values and their discrete
probability distributions.

The above model generalizes the one found in [11, 29] in the sense that it
requires that the auctioneer decide whether or not to purchase the external
information rather than assume that she initially possesses it. Similarly, it gen-
eralizes the work in [34] in the sense that it allows the information provider to
provide a subset of values rather than the specific true value.

3 Analysis

Our analysis uses the concept of mixed Bayesian Nash Equilibrium. Since the
auctioneer needs to decide both whether to purchase the information and if so
whether to disclose the information received, we can characterize her strategy
using Rauc = (pa, pa1 , ..., p

a
l ) where pa is the probability she will purchase the

information from the information provider and pai (1 ≤ i ≤ l) is the probability
she will disclose to the bidders the subset received if that subset is Xi. The
dominating bid of a bidder of type t, when subset X ′ is received (including
the case where X ′ = ∅, i.e., no information is disclosed), denoted B(t,X ′),
is the expected private value calculated by weighing each private value Vt(x)
according to the post-priori probability of x being the true common value given
the information X ′, denoted Pr(X = x|X ′) [11], i.e.: B(t,X ′) =

∑
x∈X∗ Vt(x) ·

Pr(X = x|X ′). If the auctioneer discloses a subset X ′ ⊂ X∗ 6= ∅ then Pr(X =

x|X ′) = Pr(X=x)∑
y∈X′ Pr(X=y) for any x ∈ X ′ and Pr(X = x|X ′) = 0 otherwise. If no

information is disclosed (X ′ = ∅) then Pr(X = x|X ′ = ∅) needs to be calculated
based on the bidders’ belief of whether information was indeed purchased and if
so, whether that value is intentionally not disclosed by the auctioneer. Assume
the bidders believe that the auctioneer has purchased the information from the
information provider1 with a probability of p and that if indeed purchased then
if the information received was the subset Xi then it will be disclosed to the
bidders with a probability of pi. In this case the probability of any value x ∈ Xi

being the true common value is given by:

1 Being rational, all bidders hold the same belief in equilibrium.



Pr(X=x|X ′=∅) =
Pr(X = x)(p(1− pi) + (1− p))

(1− p)+p
∑
Xj

(1− pj)
∑

y∈Xj

Pr(X = y)
(1)

The term in the numerator is the probability that x is indeed the true value
however the subset it is in is not disclosed. If indeed x is the true value (i.e., with
a probability of Pr(X = x)) then it is not disclosed either when the information
is not purchased (i.e., with a probability of (1− p)) or when purchased but not
disclosed (i.e., with a probability of p(1−pi)). The term in the denominator is the
probability information will not be disclosed. This happens when the information
is not purchased (i.e., with a probability (1 − p)) or when the information is
purchased however the auctioneer does not disclose the subset received (i.e.,
with a probability of p

∑
(1 − pj)

∑
y∈Xj

Pr(X = y)). Further on in the paper
we refer to the strategy where information is not disclosed as an empty set.
The bidders’ strategy, denoted Rbidder, can thus be compactly represented as
Rbidder = (pb, pb1, ..., p

b
k), where pb is the probability they assign to information

purchased and pbi is the probability they assign to the event that the information
is indeed disclosed if purchased and becomes Xi.

In order to formalize the expected second-best bid if the auctioneer discloses
the subset X ′ we apply the calculation method given in [34] but replace the
exact value X with a subset x′. We first define two probability functions. The
first is the probability that given that the subset disclosed by the auctioneer
is X ′ , the bid placed by a random bidder equals w, denoted g(w,X ′), given
by: g(w,X ′) =

∑
B(t,X′)=w Pr(T = t). The second is the probability that the

bid placed by a random bidder equals w or below, denoted G(w,X ′), given by:
G(w,X ′) =

∑
B(t,X′)≤w Pr(T = t).

The auctioneer’s expected profit when disclosing the subset X ′, denoted
ERauc(X

′), equals the expected second-best bid:

ERauc(X
′) =

∑
w∈{B(t,X′)|t∈T}

w(

n−1∑
k=1

n

(
n− 1

k

)
(1−G(w,X ′))(g(w,X ′))k(G(w,X ′)− g(w,X ′))n−k−1

+

n∑
k=2

(
n

k

)
(g(w,X ′))k(G(w,X ′)− g(w,X ′))n−k)

(2)

The calculation iterates over all of the possible second-best bid values, assign-
ing to each its probability of being the second-best bid. As we consider discrete
probability functions, it is possible to have two bidders place the same highest
bid (in which case it is also the second-best bid). For any given bid value, w, we
therefore consider the probability of either: (i) one bidder bidding more than w,
k ∈ 1, ..., (n− 1) bidders bidding exactly w and all of the other bidders bidding
less than w; or (ii) k ∈ 2, ..., n bidders bidding exactly w and all of the others
bidding less than w.

Consequently, the auctioneer’s expected revenue from the auction itself (i.e.,
excluding the payment C to the information provider), when the auctioneer uses



Rauc = (pa, pa1 , ..., p
a
k) and the bidders use Rbidder, denoted ER(Rauc, Rbidder),

is given by:

ER(Rauc, Rbidder)=pa
l∑

i=1

∑
x∈Xi

Pr(X = x)pai ·ERauc(Xi)

+ ((1−pa)+pa
l∑

i=1

∑
x∈Xi

Pr(X = x)(1− pai )) · ERauc(∅)

(3)

where ERauc(Xi) is calculated according to (2) (also in the case where Xi = ∅).
Consequently the auctioneer’s expected benefit, denoted EB(Rauc, Rbidder), is
given by EB(Rauc, Rbidder) = ER(Rauc, Rbidder)− pa ∗ C.

A stable solution in terms of the mixed Bayesian Nash Equilibrium in this
case is necessarily of the form Rauc = Rbidder = R = (p, p1, ..., pl) (because other-
wise, if Rauc = R′ 6= Rbidder then bidders necessarily have an incentive to deviate
to Rbidder = R′), such that: (a) for any 0 < pi < 1 (or 0 < p < 1): ERauc(∅, R) =
ERauc(Xi) (or ERauc(∅, Rbidder) = ERauc((1, p1, ..., pl), R

bidder)); (b) for any
pi = 0 (or p = 0): ERauc(∅, Rbidder) ≥ ERauc(Xi) (or ERauc(∅, Rbidder) ≥
ERauc((1, p1, ..., pl), R

bidder); and (c) for any pi = 1 (or p = 1): ERauc(∅, Rbidder) ≤
ERauc(Xi) (or ERauc(∅, Rbidder) ≤ ERauc((1, p1, ..., pl), R

bidder). The proof for
this derivation is similar to the proof given in [34] (see page 39), with the ex-
ception that instead of referring to individual values of X we refer to subsets of
values Xi. Therefore we need to evaluate all the possible solutions of the form
(p, p1, ..., pl) that may hold (where each probability is either assigned 1, 0 or a
value in-between). Each mixed solution of these 2 · 3k combinations (because
there is only one solution where p = 0 is applicable) should be first solved for
the appropriate probabilities according to the above stability conditions. Since
the auctioneer is the first mover in this model (deciding on whether or not to
purchase information), the equilibrium used is the stable solution for which the
auctioneer’s expected profit is maximized.

We note that if the information is provided for free (C = 0) then information
is necessarily obtained and the resulting equilibrium is equivalent to the one
given in [11] for the pure Bayesian Nash Equilibrium case and in [29] for the
mixed Bayesian Nash Equilibrium case. Similarly, if |Xi| = 1 ∀i is enforced
(i.e., the information provider provides the exact value of X) then the resulting
equilibrium is the same as the one given in [34].

4 Influencing the Information Provider’s Capabilities to
distinguish between values

As discussed in the introduction, in various settings the auctioneer can influ-
ence the information provider’s ability to distinguish between different values
the common value obtains. In this section we consider the case where the auc-
tioneer has full control over the structure of D, i.e., the division of X∗ into
disjoint subsets, each composed of values which the information provider cannot
distinguish between.



Limiting the information provider’s ability to distinguish between values may
seem non-intuitive in the sense that it limits the auctioneer’s strategy space when
it comes to disclosing this information to bidders, if it is purchased. Nevertheless,
in many settings the strategy of constraining the information provider’s input
can actually play into the hands of the auctioneer and improve her expected
profit. This phenomenon is illustrated in Figure 1, which depicts the auction-
eer’s expected profit (vertical axis) as a function of the information purchasing
cost (horizontal axis), for several possible divisions of X∗ into subsets of non-
distinguishable values. The setting used for this example is given in the table
below the graph. It is based on three bidders, where each can be of four different
types. The first column of the table depicts the different bidder types and the
second column gives their probability. Similarly, the second and third rows depict
the different possible values of X (denoted x1,x2,x3 and x4) and their proba-
bilities. The remaining values are the valuations that bidders of different types
assign different possible values of the parameter X. For example, if a bidder is
of type 3, then her valuation of x2 is 59.

Fig. 1. The auctioneer’s expected profit as a function of the information purchasing
cost for different divisions of X∗ into subsets of non-distinguishable values.

Each of the three graphs given in the figure relates to different possible divi-
sions, d of X∗ (marked next to it), depicting the expected profit of the auctioneer



in the equilibrium resulting in the specific cost of information on the horizontal
axis. In this example the resulting equilibrium is always based on pure strategies
(i.e., p, pi ∈ {0, 1}) and the points of discontinuity in the curve represent the
transition from one equilibrium to another. In particular, for C values in which
the curve decreases, the equilibrium is based on always purchasing the informa-
tion (though not necessarily disclosing all subsets). This happens when the cost
of purchasing the information justifies its purchase, i.e., for relatively small C
values. The non-decreasing part of the curve is associated with an equilibrium
in which the information is essentially not purchased.

As can be seen from the figure, for any cost of purchasing the information
0.9 < C < 1.1, the auctioneer is better off not allowing the information provider
to distinguish between all values: the division d = {{x1}, {x2}, {x3}, {x4}} is
dominated by d′ = {{x1}, {x2, x3}, {x4}} and d′′ = {{x1, x2}, {x3, x4}}. The
explanation for this interesting phenomenon lies in the different costs of the
transition between equilibria due to stability considerations. With fully distin-
guishable values, it is possible that a desired solution which yields the auctioneer
a substantial expected profit is not stable (e.g., in our case when 0.9 < C < 1.1
the solution is that the information is not purchased at all), whereas with inac-
curate information the solution is stable and holds as the equilibrium.

In particular, in our example, when the information provider acts fully strate-
gically, i.e., sets the price of information to the maximum possible price for which
the information will still be purchased (the C value in which the equilibrium
changes from purchase to not purchase the information, marked with circles in
the graphs) the auctioneer will gain (and the information provider will essentially
lose) from restricting the information provider’s ability to distinguish between
values. For example, with {{x1}, {x2, x3}, {x4}} the information will be priced at
C = 0.4 yielding the auctioneer an expected profit of 47.6 (compared to C = 1.1
and a profit of 46.8 in the “fully distinguishable” case).

5 Related Work

Auctions are an effective means of trading and allocating goods whenever the
seller is unsure about buyers’ (bidders’) exact valuations of the sold item [24,
25]. The advantage of many auction mechanism variants in this context is in the
ability to effectively extract the bidders’ valuations [23, 32], resulting in the most
efficient allocation. Due to its many advantages, this mechanism is commonly
used and researched and over the years has evolved to support various settings
and applications such as on-line auctions [22, 27, 19, 37, 36], matching agents in
dynamic two-sided markets [5], resource allocation [31, 30, 7] and even for task
allocation and joint exploration [15, 26]. In this context great emphasis has been
placed on studying bidding strategies [40, 38, 3], the use of software agents to
represent humans in auctions [6], combinatorial auctions [39] and the develop-
ment of auction protocols that are truthful [5, 8, 7, 2] and robust (e.g., against
false-name bids in combinatorial auctions [41]).



The case where there is some uncertainty associated with the value of the
sold (auctioned) item is quite common in the literature on auctions. Most com-
monly it is assumed that the value of the auctioned item is unknown to the
bidders at the time of the auction and bidders may only have an estimate or
some privately known signal, such as an expert’s estimate, that is correlated with
the true value [17, 24]. Many of the works using uncertain common value models
assumed asymmetry in the knowledge available to the bidders and the auction-
eer regarding the auctioned item, typically having sellers more informative than
bidders [1, 11]. As such, much emphasis was placed on the role of information
revelation [28, 33, 9, 12, 14, 13, 20, 21]. In particular, several authors have consid-
ered the computational aspects of such models where the auctioneer needs to
decide on the subsets of non-distinguishable values to be disclosed to the bid-
ders [11, 29, 10]. Nonetheless, all these works assume the auctioneer necessarily
obtains the information and that the division into non-distinguishable groups,
whenever applicable, is always a priori given to the bidders. Furthermore, not
disclosing any information (signal) is not allowed in these works. Our problem,
on the other hand, does not require that the auctioneer possess (or purchase) the
information in the first place, and allows the auctioneer the decision of whether
or not to disclose any value even if the information is purchased. In particular,
when no information is disclosed bidders cannot distinguish between the infor-
mation not being purchased in the first place and the information is purchased
but the value is not disclosed. More importantly, none of the prior work considers
the option of influencing the ability of the information provider to distinguish
between different values.

Prior work that considers a three-ply equilibrium in settings where informa-
tion can be potentially purchased from an external information provider assumes
the information provider can always supply the true common value [34]. More-
over, this work does not allow any influence whatsoever on the auctioneer’s
strategy over the ability to distinguish between different values. Work in other
domains that did consider selective information disclosure, e.g., for comparison
shopping agents [18] or for sharing data for user modeling [35] is very far in terms
of the principles used, and cannot be applied in our case. On the whole, despite
the many prior models that consider a subset of our model’s characteristics, to
the best of our knowledge, an analysis that addresses all of the different aspects
included in our model does not exist in the literature.

6 Conclusions and Future Work

In this paper we advance the state of the art by providing a three player equi-
librium analysis that allows the ability of influencing the auctioneer’s expected
profit through controlling the granularity and accuracy of the information of-
fered for sale. The presence of information providers in multi agent systems
has become substantial and consequently, enforces the reconsideration of the
equilibrium where this time such options are taken into account. The informa-
tion providers may be individuals with specific expertise who offer their services



for a fee (e.g. an analyst) or large information service providers such as Car-
fax.con or credit report companies. It is commonly assumed that these informa-
tion providers indeed can control the level of accuracy they offer their customers.
Moreover, the accuracy of the information provided depends on the customer’s
cooperation and the level of the inputs she provides. Against this background,
the importance of this equilibrium construction and analysis for auctioneers or
the information providers is clear, especially, in terms of the ability to control
the granularity in which information is provided.

Here, we show an interesting phenomenon where the auctioneer may benefit
in cases where the information provider cannot fully identify the exact state of
nature, even though the information is eventually offered exclusively to the auc-
tioneer. This phenomenon is explained by the stability requirement – beneficial
solutions that could not hold with the complete (”perfect”) information scheme,
because of stability considerations, are found to be stable once the information
being offered for sale is constrained.
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